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Corollary 1. Let A∈Rm×n and let k be a natural number with k≤ n/2. If δ2k(A)<
1/3, then every k-sparse vector x is the unique solution of (P1) with y= Ax.

1.3.4 RIP for random matrices

Fromwhat was said up to now, we know that matrices with small restricted isometry
constants fulfill the null space property, and sparse solutions of underdetermined
linear equations involving such matrices can be found by !1-minimization (P1). We
discuss in this chapter a class of matrices with small RIP constants. It turns out
that the most simple way is to construct these matrices by taking its entries to be
independent standard normal variables.

We denote until the end of this section

A=
1√
m




ω1,1 . . . ω1n
...

. . .
...

ωm1 . . . ωmn



 , (1.14)

where ωij, i = 1, . . . ,m, j = 1, . . . ,n, are i.i.d. standard normal variables. We shall
show that such a matrix satisfies the RIP with reasonably small constants with high
probability.

1.3.4.1 Concentration inequalities

Before we come to the main result of this chapter, we need some properties of
independent standard normal variables.

Lemma 1. (i) Let ω be a standard normal variable. Then E(eλω
2
) = 1/

√
1− 2λ

for −∞< λ < 1/2.
(ii) (2-stability of the normal distribution) Let m∈N, let λ = (λ1, . . . ,λm)∈Rm and

let ω1, . . . ,ωm be i.i.d. standard normal variables. Then λ1ω1+ · · ·+λmωm ∼
(∑m

i=1λ 2
i )

1/2 ·N (0,1), i.e. it is equidistributed with a multiple of a standard
normal variable.

Proof. The proof of (i) follows from the substitution s :=
√
1− 2λ · t in the

following way.

E(eλω
2
) =

1√
2π

∫ ∞

−∞
eλ t

2 · e−t2/2dt = 1√
2π

∫ ∞

−∞
e(λ−1/2)t

2
dt

=
1√
2π

∫ ∞

−∞
e−s

2/2 · ds√
1− 2λ

=
1√

1− 2λ
.
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Although the property (ii) is very well known (and there are several different ways
to prove it), we provide a simple geometric proof for the sake of completeness. It is
enough to consider the case m= 2. The general case then follows by induction.

Let therefore λ = (λ1,λ2) ∈ R2,λ '= 0, be fixed and let ω1 and ω2 be i.i.d.
standard normal random variables. We put S := λ1ω1 + λ2ω2. Let t ≥ 0 be an
arbitrary non-negative real number. We calculate

P(S ≤ t) =
1
2π

∫

(u,v):λ1u+λ2v≤t
e−(u

2+v2)/2dudv=
1
2π

∫

u≤c;v∈R
e−(u

2+v2)/2dudv

=
1√
2π

∫

u≤c
e−u

2/2du.

We have used the rotational invariance of the function (u,v)→ e−(u
2+v2)/2. The

value of c is given by the distance of the origin from the line {(u,v) : λ1u+λ2v= t}.
It follows by elementary geometry and Pythagorean theorem that (cf. ∆OAP *
∆BAO in Figure 1.3)

c= |OP|= |OB| · |OA||AB| =
t√

λ 2
1 +λ 2

2

.

We therefore get

P(S ≤ t) =
1√
2π

∫
√

λ 2
1+λ 2

2 ·u≤t
e−u

2/2du= P
(√

λ 2
1 +λ 2

2 ·ω ≤ t
)
.

The same estimate holds for negative t’s by symmetry and the proof is finished. !

Fig. 1.3 Calculating c= |OP| by elementary geometry for λ1,λ2 > 0
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If ω1, . . . ,ωm are (possibly dependent) standard normal random variables, then
E(ω2

1 + · · ·+ω2
m) = m. If ω1, . . . ,ωm are even independent, then the value of ω2

1 +
· · ·+ω2

m concentrates very strongly aroundm. This effect is known as concentration
of measure, cf. [49, 50, 55].

Lemma 2. Let m ∈ N and let ω1, . . . ,ωm be i.i.d. standard normal variables. Let
0< ε < 1. Then

P(ω2
1 + · · ·+ω2

m ≥ (1+ ε)m)≤ e−
m
2 [ε

2/2−ε3/3]

and

P(ω2
1 + · · ·+ω2

m ≤ (1− ε)m)≤ e−
m
2 [ε

2/2−ε3/3].

Proof. We prove only the first inequality. The second one follows in exactly the
same manner. Let us put β := 1+ ε > 1 and calculate

P(ω2
1 + · · ·+ω2

m ≥ βm) = P(ω2
1 + · · ·+ω2

m−βm≥ 0)

= P(λ (ω2
1 + · · ·+ω2

m−βm)≥ 0)

= P(exp(λ (ω2
1 + · · ·+ω2

m−βm))≥ 1)

≤ Eexp(λ (ω2
1 + · · ·+ω2

m−βm)),

where λ > 0 is a positive real number, which shall be chosen later on. We have used
the Markov’s inequality (1.3) in the last step. Further we use the elementary proper-
ties of exponential function and (1.5) for the independent variablesω1, . . . ,ωm. This
leads to

Eexp(λ (ω2
1 + · · ·+ω2

m−βm)) = e−λβm · Eeλω
2
1 · · ·eλω2

m = e−λβm · (Eeλω
2
1 )m

and with the help of Lemma 1 we get finally (for 0< λ < 1/2)

Eexp(λ (ω2
1 + · · ·+ω2

m−βm)) = e−λβm · (1− 2λ )−m/2.

We now look for the value of 0 < λ < 1/2, which would minimize the last
expression. Therefore, we take the derivative of e−λβm · (1− 2λ )−m/2 and put it
equal to zero. After a straightforward calculation, we get

λ =
1− 1/β

2
,
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which obviously satisfies also 0< λ < 1/2. Using this value of λ we obtain

P(ω2
1 + · · ·+ω2

m ≥ βm)≤ e−
1−1/β

2 ·βm · (1− (1− 1/β ))−m/2 = e−
β−1
2 m ·βm/2

= e−
εm
2 · e

m
2 ln(1+ε).

The result then follows from the inequality

ln(1+ t)≤ t− t2

2
+

t3

3
, −1< t < 1. !

Using 2-stability of the normal distribution, Lemma 2 shows immediately that A
defined as in (1.14) acts with high probability as isometry on one fixed x ∈ Rn.

Theorem 4. Let x ∈ Rn with ‖x‖2 = 1 and let A be as in (1.14). Then

P
(∣∣∣‖Ax‖22− 1

∣∣∣≥ t
)
≤ 2e−

m
2 [t

2/2−t3/3] ≤ 2e−Cmt
2

(1.15)

for 0< t < 1 with an absolute constant C > 0.

Proof. Let x=(x1,x2, . . . ,xn)T . Then we get by the 2-stability of normal distribution
and Lemma 2

P
(∣∣∣‖Ax‖22− 1

∣∣∣≥ t
)

= P
(∣∣(ω1,1x1+ · · ·+ω1nxn)2+ · · ·+(ωm1x1+ · · ·+ωmnxn)2−m

∣∣≥ mt
)

= P
(∣∣ω2

1 + · · ·+ω2
m−m

∣∣≥ mt
)

= P
(
ω2
1 + · · ·+ω2

m ≥ m(1+ t)
)
+P

(
ω2
1 + · · ·+ω2

m ≤ m(1− t)
)

≤ 2e−
m
2 [t

2/2−t3/3].

This gives the first inequality in (1.15). The second one follows by simple algebraic
manipulations (forC = 1/12). !
Remark 4. (i) Observe that (1.15) may be easily rescaled to

P
(∣∣∣‖Ax‖22−‖x‖22

∣∣∣≥ t‖x‖22
)
≤ 2e−Cmt

2
, (1.16)

which is true for every x ∈Rn.
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(ii) A slightly different proof of (1.15) is based on the rotational invariance of
the distribution underlying the random structure of matrices defined by (1.14).
Therefore, it is enough to prove (1.15) only for one fixed element x ∈ Rn with
‖x‖2 = 1. Taking x = e1 = (1,0, . . . ,0)T to be the first canonical unit vector
allows us to use Lemma 2 without the necessity of applying the 2-stability of
normal distribution.

1.3.4.2 RIP for random Gaussian matrices

The proof of restricted isometry property of random matrices generated as in (1.14)
is based on two main ingredients. The first is the concentration of measure
phenomenon described in its most simple form in Lemma 2, and reformulated in
Theorem 4. The second is the following entropy argument, which allows to extend
Theorem 4 and (1.15) from one fixed x ∈ Rn to the set Σk of all k-sparse vectors.

Lemma 3. Let t > 0. Then there is a set N ⊂ Sn−1 = {x ∈Rn : ‖x‖2 = 1} with

(i) |N |≤ (1+ 2/t)n and
(ii) for every z ∈ Sn−1, there is a x ∈N with ‖x− z‖2 ≤ t.

Proof. Choose any x1 ∈ Sn−1. If x1, . . . ,x j ∈ Sn−1 were already chosen, take x j+1 ∈
Sn−1 arbitrarily with ‖x j+1 − xl‖2 > t for all l = 1, . . . , j. This process is then
repeated as long as possible, i.e. until we obtain a set N = {x1, . . . ,xN} ⊂ Sn−1,
such that for every z ∈ Sn−1 there is a j ∈ {1, . . . ,N} with ‖x j− z‖2 ≤ t. This gives
the property (ii).

We will use volume arguments to prove (i). It follows by construction that
‖xi− x j‖2 > t for every i, j ∈ {1, . . . ,N} with i '= j. By triangle inequality, the balls
B(x j, t/2) are all disjoint and are all included in the ball with the center in the origin
and radius 1+ t/2. By comparing the volumes we get

N · (t/2)n ·V ≤ (1+ t/2)n ·V,

where V is the volume of the unit ball in Rn. Hence, we get N = |N |≤ (1+2/t)n.

!
With all these tools at hand, we can now state the main theorem of this section,

whose proof follows closely the arguments of [4].

Theorem 5. Let n≥m≥ k≥ 1 be natural numbers and let 0< ε < 1 and 0< δ < 1
be real numbers with

m≥Cδ−2
(
k ln(en/k)+ ln(2/ε)

)
, (1.17)
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where C > 0 is an absolute constant. Let A be again defined by (1.14). Then

P
(
δk(A)≤ δ

)
≥ 1− ε.

Proof. The proof follows by the concentration inequality of Theorem 4 and the
entropy argument described in Lemma 3. By this lemma, there is a set

N ⊂ Z := {z ∈ Rn : supp (z)⊂ {1, . . . ,k},‖z‖2 = 1},

such that

(i) |N |≤ 9k and
(ii) minx∈N ‖z− x‖2 ≤ 1/4 for every z ∈ Z.

We show that if
∣∣‖Ax‖22− 1

∣∣ ≤ δ/2 for all x ∈N , then
∣∣‖Az‖22− 1

∣∣ ≤ δ for all
z ∈ Z.

We proceed by the following bootstrap argument. Let γ > 0 be the smallest
number, such that

∣∣‖Az‖22− 1
∣∣ ≤ γ for all z ∈ Z. Then

∣∣‖Au‖22−‖u‖22
∣∣≤ γ‖u‖22 for

all u∈Rn with supp (u)⊂ {1, . . . ,k}. Let us now assume that ‖u‖2 = ‖v‖2 = 1 with
supp (u)∪ supp (v)⊂ {1, . . . ,k}. Then we get by polarization identity

|〈Au,Av〉− 〈u,v〉|= 1
4

∣∣∣(‖A(u+ v)‖22−‖A(u− v)‖22)− (‖u+ v‖22−‖u− v‖22)
∣∣∣

≤ 1
4

∣∣∣‖A(u+ v)‖22−‖u+ v‖22
∣∣∣+

1
4

∣∣∣‖A(u− v)‖22−‖u− v‖22
∣∣∣

≤ γ
4
‖u+ v‖22+

γ
4
‖u− v‖22 =

γ
2
(‖u‖22+ ‖v‖22) = γ.

Applying this inequality to u′ = u/‖u‖2 and v′ = v/‖v‖2, we obtain

|〈Au,Av〉− 〈u,v〉|≤ γ‖u‖2‖v‖2 (1.18)

for all u,v ∈ Rn with supp (u)∪ supp (v)⊂ {1, . . . ,k}.
Let now again z∈ Z. Then there is an x∈N , such that ‖z−x‖2≤ 1/4.We obtain

by triangle inequality and (1.18)

∣∣‖Az‖22− 1
∣∣=

∣∣‖Ax‖22− 1+ 〈A(z+ x),A(z− x)〉− 〈z+ x,z− x〉
∣∣

≤ δ/2+ γ‖z+ x‖2‖z− x‖2 ≤ δ/2+ γ/2.

As the supremum of the left-hand side over all admissible z’s is equal to γ , we obtain
that γ ≤ δ and the statement follows.
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Equipped with this tool, the rest of the proof follows by a simple union bound.

P(δk(A)> δ )≤ ∑
T⊂{1,...,n}

|T |≤k

P
(
∃z ∈Rn : supp (z)⊂ T,‖z‖2 = 1 and

∣∣‖Az‖22− 1
∣∣> δ

)

=

(
n
k

)
P
(
∃z ∈ Z with

∣∣‖Az‖22− 1
∣∣> δ

)

≤
(
n
k

)
P
(
∃x ∈N :

∣∣‖Ax‖22− 1
∣∣> δ/2

)
.

By Theorem 4, the last probabilitymay be estimated from above by 2e−C
′mδ 2 . Hence

we obtain

P(δk(A)> δ )≤ 9k
(
n
k

)
·2e−C′mδ 2

Hence it is enough to show that the last quantity is at most ε if (1.17) is satisfied.
But this follows by straightforward algebraic manipulations and the well-known
estimate

(
n
k

)
≤ nk

k!
≤
(en
k

)k
. !

1.3.4.3 Lemma of Johnson and Lindenstrauss

Concentration inequalities similar to (1.15) play an important role in several areas of
mathematics. We shall present their connection to the famous result from functional
analysis called Johnson–Lindenstrauss lemma, cf. [1, 22, 46, 54]. The lemma states
that a set of points in a high-dimensional space can be embedded into a space of
much lower dimension in such a way that the mutual distances between the points
are nearly preserved. The connection between this classical result and compressed
sensing was first highlighted in [4], cf. also [47].

Lemma 4. Let 0< ε < 1 and let m,N and n be natural numbers with

m≥ 4(ε2/2− ε3/3)−1 lnN.

Then for every set {x1, . . . ,xN}⊂Rn there exists a mapping f :Rn→Rm, such that

(1− ε)‖xi− x j‖22 ≤ ‖ f (xi)− f (x j)‖22 ≤ (1+ ε)‖xi− x j‖22, i, j ∈ {1, . . . ,N}.

(1.19)
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Proof. We put f (x) = Ax, where again

Ax=
1√
m




ω1,1 . . . ω1n
...

. . .
...

ωm1 . . . ωmn



x,

and ωij, i = 1, . . . ,m, j = 1, . . . ,n are i.i.d. standard normal variables. We show that
with this choice f satisfies (1.19) with positive probability. This proves the existence
of such a mapping.

Let i, j ∈ {1, . . . ,N} arbitrary with xi '= x j. Then we put z= xi−x j
‖xi−x j‖2

and evaluate
the probability that the right-hand side inequality in (1.19) does not hold. Theorem 4
then implies

P
(∣∣∣‖ f (xi)− f (x j)‖22−‖xi− x j‖22

∣∣∣> ε‖xi− x j‖22
)
= P

(∣∣∣‖Az‖2− 1
∣∣∣> ε

)

≤ 2e−
m
2 [ε

2/2−ε3/3].

The same estimate is also true for all
(N
2

)
pairs {i, j} ⊂ {1, . . . ,N} with i '= j. The

probability that one of the inequalities in (1.19) is not satisfied is therefore at most

2 ·
(
N
2

)
· e−

m
2 [ε

2/2−ε3/3] < N2 · e−
m
2 [ε

2/2−ε3/3] = exp
(
2lnN− m

2
[ε2/2− ε3/3]

)
≤ e0 = 1

for m ≥ 4(ε2/2− ε3/3)−1 lnN. Therefore, the probability that (1.19) holds for all
i, j ∈ {1, . . . ,N} is positive and the result follows. !

1.3.5 Stability and Robustness

The ability to recover sparse solutions of underdetermined linear systems by quick
recovery algorithms as !1-minimization is surely a very promising result. On the
other hand, two additional features are obviously necessary to extend this results to
real-life applications, namely

• Stability: We want to be able to recover (or at least approximate) also vectors
x ∈ Rn, which are not exactly sparse. Such vectors are called compressible and
mathematically they are characterized by the assumption that their best k-term
approximation decays rapidly with k. Intuitively, the faster the decay of the best
k-term approximation of x ∈Rn is, the better we should be able to approximate x.

• Robustness: Equally important, we want to recover sparse or compressible vectors
from noisy measurements. The basic model here is the assumptions that the


