Lecture Notes (courses 1& 2)
“Sparsity and High Dimensions”
Y. De Castro & R. Gribonval

https://statistical-learning-centrale.github.io/

draft of January 27, 2026

Contents

1 Introduction: The Geometry of Underdetermined Systemss 2
1.1 Sparsity . . . .o, 2
1.2 Compressibility . . . . . . . 3

2 The {;-Minimization Problem (/) 3
2.1  The Null Space Property and Uniqueness (NSPq) . . . . . . . .. ... ... ... 3
2.2 Fundamental Measurement Bounds . . . . . . . . ... ... ... .. 4

3 Computational Complexity of Sparse Recovery 5
3.1 P, NP, and NP-Hardness . . . . . . . . . . . . ... 5
3.2 Complexity of Sparse Recovery . . . . . . . . . . . ... ... 6

4 Coherence and Greedy Algorithms

4.2 The Exact Recovery Condition . . . . . . . . . . . .. ... ...

6
4.1 Orthogonal Matching Pursuit (OMP) . . . . . . . . . . ... ... ... ..... 7
8
4.3 Mutual Coherence and the Welch Bound . . . . . . . ... ... ... ... .... 9

Basis Pursuit 10
5.1 The Null Space Property (NSP1) . . . . . . . . . . .. . .. ... ... ... 10
5.2 Stable Sparse Recovery . . . . . . . . 11
5.3 Robustness . . . ... 13



1 Introduction: The Geometry of Underdetermined Systemss

The classical paradigm of signal processing, governed largely by the Shannon-Nyquist sampling
theorem, dictates that a signal must be sampled at a rate at least twice its highest frequency
to be perfectly reconstructed. This principle has underpinned decades of digital data acquisition.
However, the emerging theory of Compressive Sensing (CS) challenges this orthodoxy, asserting that
if a signal exhibits a sparse structure—meaning it has few non-zero coefficients in some basis—it
can be recovered from a number of measurements significantly smaller than its ambient dimension.
Master 2 lecture notes on "Sparsity and High Dimensions" rigorously establishes the mathematical
frameworks that permit such recovery.

In many areas of applied mathematics and engineering, we face the challenge of recovering a
signal of interest x € CV from a set of linear measurements y € C™. This process is modeled by
the linear system:

Ax =y, (1)

where A € C™*N is the measurement matrix (or sensing matrix). Classical linear algebra tells us that
to recover x uniquely, we generally need at least as many measurements as variables, i.e., m > N.
However, in the context of Compressive Sensing, we operate in the regime of underdetermined
linear systems:

m < N.

In this setting, the system (1) is underdetermined. The operator A has a non-trivial null space
(kernel), denoted by ker A. If x is a solution to Ax = y, then for any v € ker A, the vector x' = x+v
is also a solution, since

Ax+v)=Ax+Av=y+0=y.

Consequently, without additional information, it is impossible to distinguish the true signal x from
the infinitely many other solutions x+ v. Standard least squares solutions (minimizing the £>-norm)
typically yield non-sparse results that do not recover the original signal of interest. To resolve this
ambiguity, we exploit the sparsity of the signal. The central hypothesis of CS is that the true sig-
nal x resides on a low-dimensional union of subspaces within CV. Specifically, we assume x has at
most s non-zero entries. This structural assumption regularizes the inverse problem, transforming it
from an impossible algebraic task into a solvable combinatorial or geometric optimization problem.
The core objectives of this report are to determine the conditions on the matrix A that guaran-
tee unique recovery, to analyze the computational complexity of such recovery, and to develop
tractable algorithms—specifically Greedy methods and Convex Relaxations—that achieve recovery
guarantees.

Remark 1.1. The central question of this course is: Under what conditions can we recover x
uniquely from y despite the system being underdetermined? The answer relies on the concept
of sparsity.

1.1 Sparsity

To resolve the ill-posedness of the underdetermined system, we assume prior knowledge about the
structure of the signal x. The fundamental assumption in Compressive Sensing is that x is sparse.

Definition 1.2 (Support). The support of a vector x € CN is the index set of its non-zero entries:

supp(x) :=={j e {1,.... N} : x; # 0}.



Definition 1.3 (¢o-"norm”). The number of non-zero entries of x is denoted by ||x||,:
[[x[lg := card(supp(x)).

Note: Although called the £yp-norm, this functional is not a norm (it is not homogeneous). It
satisfies the triangle inequality ||x + z||y < [Ix]lo + l|Zllo-

Definition 1.4 (Sparsity). A vector x € CN is called s-sparse if it has at most s non-zero entries,
ie.,
lIxllo < s.

The set of all s-sparse vectors is denoted by ¥ ;:
Y= {xeC": x|, <s}

Geometrically, ¥ is a union of (’;’) subspaces of dimension s aligned with the canonical axes
of CN. This non-convex structure is the root of the complexity issues discussed later.

1.2 Compressibility

In practical applications, signals are rarely exactly sparse. Instead, they are compressible, meaning
their sorted coefficients decay rapidly (e.g., obeying a power law). To quantify the deviation from
exact sparsity, we introduce the error of best s-term approximation.

Definition 1.5 (Best s-term approximation error). For x € CN and p > 0, the £,-error of best
s-term approximation /s:
os(x), := Inf ||x —Z|,.
S( )P zey. || ||p

This infimum is achieved by a vector, denoted by X, , constructed by retaining the s largest
coefficients of x in absolute value and setting the rest to zero. If os5(x), is small relative to ||x||,,
the signal is compressible. Recovery guarantees must ideally account for this "tail" energy, ensuring
that the reconstruction error is proportional to os(x)p.

2 The ¢yp-Minimization Problem (F,)

If we assume the original signal x is sparse, the natural approach to recover x from y = Ax is to
search for the sparsest vector consistent with the measurements. This leads to the formulation of
the problem (F):

(Po) min |lz]|, subjectto Az=y. (2)
zeCN

A crucial theoretical question is whether the solution to (Py) corresponds to the original signal.
We first establish a relationship between unique recovery and the properties of the matrix A.

2.1 The Null Space Property and Uniqueness (NSP,)

We seek a condition on A ensuring that every s-sparse vector is the unique solution to (Py). This
condition is intimately related to the null space of A.



Theorem 2.1 (Uniqueness and NSPg). Given a matrix A € C™N and an integer s > 1, the
following properties are equivalent:

(a) Every s-sparse vector x € CN is the unique s-sparse solution of Az = Ax.

(b) The null space of A contains no 2s-sparse vector other than the zero vector:

ker AN ¥,s = {0}.

(c) Every set of 2s columns of A is linearly independent.

Proof. (b) = (a): Assume (b) holds. Let x and z be two s-sparse vectors such that Ax = Az.
Then A(x —z) =0,s0 v=x—z € kerA. Since x,z € ¥, the vector v satisfies:

Ivilo = IIx = zllo < lIxllo + [|1zllp < s+ 5 = 2s.

Thus v € ker AN Xps. By condition (b), we must have v = 0, which implies x = z.

(a) = (b): Assume (a) holds. Let v € ker A be a vector with ||v||, < 2s. We can decompose
v as v = x — z where x and z are s-sparse vectors with disjoint supports (e.g., let S = supp(v),
partition S into S; U S, with |S1| <'s5,|S2| <'s, and set x = vs,, z = —vs,). Since v € ker A, we
have 0 = Av = A(x — z) = Ax = Az. Since both x and z are s-sparse, assumption (a) implies
Xx = z. Since they have disjoint supports, this forces x =0 and z =0, hence v = 0.

(b) < (c): Avector v € Yos isin ker Aif and only if Av =370,y vjA; = 0. Thisis a linear
dependency among at most 2s columns of A. If no non-trivial 2s-sparse vector exists in the kernel,
no set of 2s columns can be linearly dependent, and vice-versa. O

Remark 2.2 (Spark). The spark of a matrix A, denoted spark(A), is defined as the smallest number
of columns of A that are linearly dependent.

spark(A) := min{||v]|y : v € ker A\ {0}}.
Condition (b) in Theorem 2.1 can be restated as:
spark(A) > 2s.

Unlike the rank, which is easily computable (e.g., via SVD), calculating the spark is combinato-
rially difficult, as it requires checking all subsets of columns.

2.2 Fundamental Measurement Bounds

From Theorem 2.1, for unique recovery of any s-sparse vector, we need spark(A) > 2s. Since
spark(A) < rank(A) + 1 < m+ 1, we derive the fundamental lower bound on the number of
measurements:

m > 2s.

This bound is tight. Matrices (like Vandermonde matrices) exist where m = 2s suffices for unique-
ness, though these are often unstable numerically.

Theorem 2.3 (Minimal Measurements). For any integer N > 2s, there exists a measurement matrix
A € C™N with m = 2s rows such that every s-sparse vector x € CN can be recovered uniquely
from y = Ax.



Proof. Consider distinct points ti, to, .. ., ty € C and form the Vandermonde matrix A € C25*N
defined by:

1 1 . 1
t () o ty
A =
tfsl‘l t225"1 . t,%f'_l
LetScC{l,..., N} be any index set of cardinality 2s. The submatrix As consisting of the columns

indexed by S is a square 2s x 2s Vandermonde matrix. Its determinant is given by:

det(As) = [ (& -t

J.keS,j>k

Since the points t; are distinct, det(As) # 0, and thus any set of 2s columns is linearly independent.
By Theorem 2.1 (condition c), this matrix ensures unique recovery of any s-sparse vector. O

While this establishes that m = 2s is theoretically sufficient, Vandermonde matrices are noto-
riously ill-conditioned, making them unstable for practical recovery in the presence of noise. This
motivates the search for matrices with better stability properties, such as those satisfying the Re-
stricted Isometry Property.

3 Computational Complexity of Sparse Recovery

3.1 P, NP, and NP-Hardness

We have established that unique recovery is possible via (Py). However, computationally solving
(Py) is a distinct challenge. The feasible set is non-convex, and a brute-force approach would require
checking (%) subspaces, which is exponentially large.

Definition 3.1 (Class P). The class P (Polynomial time) consists of decision problems that can
be solved by a deterministic Turing machine in polynomial time. Roughly speaking, there exists an
algorithm that solves the problem in O(NX) operations for some constant k.

Definition 3.2 (Class NP). The class NP (Nondeterministic Polynomial time) consists of decision
problems for which a given candidate solution can be verified in polynomial time.

It is immediate that P C NP, since if we can find a solution in polynomial time, we can also
verify it in polynomial time. The converse is the famous open problem: is P = NP? The general
consensus is that P # NP.

To define NP-hardness, we need the concept of reduction. A problem A is polynomial-time
reducible to problem B (denoted A <, B) if an algorithm for solving B can be used to solve A with
a polynomial overhead.

Definition 3.3 (NP-Hard). A problem H is called NP-hard if every problem L in NP can be
polynomial-time reducible to H (L <, H).

Intuitively, an NP-hard problem is at least as hard as the hardest problems in NP. Note that
an NP-hard problem does not necessarily have to be in NP itself (it might not even be a decision
problem). To prove that a problem is NP-hard it is sufficient to show that a NP-Complete decision
problem is polynomial-time reducible to it, the definition is given below.



Definition 3.4 (NP-Complete). A problem C is called NP-complete /f:
1. C € NP, and
2. C is NP-hard.

3.2 Complexity of Sparse Recovery

While (FPy) provides the ideal theoretical solution, solving it numerically is computationally in-
tractable.

Theorem 3.5 (NP-Hardness). For a general matrix A and vector y, the problem (Py) is NP-hard.

Proof. We rely on a reduction from the Exact Cover by 3-Sets (X3C) problem, which is known
to be NP-complete.

The X3C Problem: Given a finiteset U = {1, ..., m} and a collection of subsets C = {Cy, . . ., Cn}
where each C; C U has exactly |C;| = 3, does there exist an exact cover? That is, a sub-collection
of indices J C {1,..., N} such that UJEJ C; = U and the sets are disjoint. Note that if an exact
cover exists, since |U| = m and each set has size 3, we must have |J] = m/3.

Reduction to (/): We construct a matrix A € R™N and a vector y € R as follows:

e et the columns of A, denoted ay, ..., an, represent the sets in C. Specifically, set (a;); =1
if i € C; and 0 otherwise.

e Lety=(1,1,...,1)T e R™.

Now consider the problem: find x such that Ax =y with minimal ||x||,.

Suppose an exact cover J exists. Let x be the indicator vector of J (x; = 1 if j € J, O else).
Then Ax = ZJ-EJ a;. Since J is an exact cover, for every row index i € U, exactly one C; contains /,
so (Ax); =1=y;. Thus Ax =y. The sparsity is ||x||, = |J| = m/3.

Conversely, suppose there exists a solution x to Ax =y with ||x||, < m/3. Since A and y have
non-negative entries, and the target sum is 1 for each row, one can argue (in the standard binary
version of the problem) that the non-zero x; must be 1. Each column a; has weight 3. So the total
weight of Axis Y x;jllajll; = 3> x;. Also, the weight of y is m. Thus 3% x; = m, which implies
> xj = m/3. If we relax to arbitrary x, any solution with ||x||, = k covers at most 3k elements.
To cover m elements (entries of y), we strictly need 3k > m, so k > m/3. Therefore, the minimal
sparsity is exactly m/3. Finding the solution to () would determine if such a cover exists (sparsity
m/3) or not (sparsity > m/3). Since X3C is NP-complete, solving (Fy) is NP-hard. O

4 Coherence and Greedy Algorithms

Since solving (Py) is intractable, we must look for computationally efficient alternatives. There are
two main categories of tractable algorithms:

1. Convex Relaxation: Replacing £y with £; (Basis Pursuit), which will be covered in the next
sections.

2. Greedy Algorithms: l|terative methods that select columns of A one by one.

The intuition behind greedy algorithms is to build the support of the signal iteratively. At each
step, we select the column of A that correlates most strongly with the current residual.



4.1 Orthogonal Matching Pursuit (OMP)

The most fundamental greedy algorithm is Orthogonal Matching Pursuit.

Algorithm 1 Orthogonal Matching Pursuit (OMP)
Require: Matrix A, measurement vector y, sparsity level s.
1: Initialize: r° = y (residual), S° = () (support), x° = 0.
2: for k=1to s do
3: Selection: Find index jx maximizing the correlation with the residual:

Ji = argmax|(a;, r' )|
J

4; Update Support: S = SK"1 U {ji}
5: Projection: Compute x¥ by minimizing the error over the chosen support:
k .
X" = ar min — Az
9, i . lly 2
6: Update Residual: r* = y — Ax*
7: end for
8: Output: x°

OMP is computationally efficient (involving only matrix-vector products and small least-squares
problems). A key question is: Under what conditions on A does OMP recover the true s-sparse
vector?

Proposition 4.1 (Convergence of Orthogonal Matching Pursuit). Given a matrix A € C™N  every
nonzero vector x € CN supported on a set S of size s is recovered from y = Ax after at most s
iterations of Orthogonal Matching Pursuit (OMP) if and only if the matrix As is injective and

max |(A*r);| > max|[(A™r)| (3)
Jjes 2€S

for all nonzero r € {Az : supp(z) C S}.

Proof. Necessity: Assume OMP recovers all vectors supported on S in at most s iterations. First,
if two distinct vectors x, z supported on S satisfied Ax = Az, recovery would be impossible for at
least one of them; thus As must be injective. Second, consider the first iteration with y = Ax
where supp(x) = S. The algorithm selects the index j; maximizing |(A*y),|. For the algorithm to
select an index within the true support (which is required for correct recovery in s steps), we must
have maxjes [(A*y);| > max,s|(A*y)¢|. Since y can be any vector in {Az : supp(z) C S}, the
condition (3) must hold for all such nonzero vectors.

Sufficiency: Assume the conditions hold. We prove by induction that the support set S”
selected by OMP after n iterations is a subset of S with cardinality n for all 0 < n <s.

1. Base case (n=0): S®=0 C S is trivial.

2. Inductive step: Suppose S” C S and |S"| = n for n < s. The residual is r" = y — Ax". Since
y € range(As) and S" C S, we have r" € {Az : supp(z) C S}. If r" =0, we are done. If
r" # 0, by condition (3), the index j,+1 maximizing the correlation lies in S. Thus S"*! C S.



Furthermore, by the properties of the OMP projection step, the residual r” is orthogonal to
the columns of A indexed by S”, meaning (A*r"); =0 for all j € S". Since r" # 0 and As is
injective, the maximum correlation on S is strictly positive. Consequently, the selected index
Jn+1 cannot be in S™. Therefore, S"™! = S" U {j,11} has cardinality n+ 1.

After s iterations, we have S° C S with |S°| = s, implying S° = S. The projection step then yields
x° = x due to the injectivity of As. ]

4.2 The Exact Recovery Condition

Let A € C™N be a measurement matrix and let S C {1,..., N} be a support set of cardinality
s. Let As denote the submatrix of A consisting of the columns indexed by S, and let A< denote
the submatrix consisting of the remaining columns. The Exact Recovery Condition (ERC) with
respect to the set S is defined as:

IALAg]lio1 <1 (4a)
where AL = (A5As) 1A% is the Moore-Penrose pseudo-inverse of As (assuming As has full column
rank), and | - |11 denotes the operator norm induced by the £;-norm, which corresponds to the

maximum absolute column sum of the matrix. Specifically, the condition requires that:
max||ALajH1 <1 (4b)
j¢s

where a; represents the j-th column of A. If this condition holds, OMP is guaranteed to recover

any s-sparse signal supported on S in exactly s steps.

Lemma 4.2 (Equivalence of ERC and OMP Condition). Let A€ C™N and let S C {1, ..., N} be
a support set such that As is injective. The condition

max [(A*r);| > max|(A*r)e| for all r € range(As) \ {0} (3)
Jjes £€S

holds if and only if the Exact Recovery Condition (ERC) is satisfied:
IAL A1 < 1. (4)

Proof. Let r be an arbitrary vector in range(As). We can write r = Asx for some unique vector
x € C* (since As is injective). Let us define z := Asr = AtAsx. Since the Gram matrix AtAs
is invertible, the mapping between x and z is a bijection, and z can be any vector in C°. We can
express x as x = (AtAs) 'z

We examine the term on the right-hand side of condition (3). The correlations with the indices
outside the support are given by:

(A'r)s = Atr = ALAsx = ALAs(AsAs) 'z = ((AsAs) T AsAs) z = (ALAc) z.
The condition (3) requires that for all z # 0:
1A slloe < A" Nslloe <> (ALAS) Zlloo < [1Z]1c.

This inequality holds for all non-zero z if and only if the operator norm of the matrix (ALAg)*
induced by the £.-norm is strictly less than 1. Recall that the operator norm ||M|/s—eo is the
maximum absolute row sum of M, while ||M||11 is the maximum absolute column sum. Therefore,
|M*||so—00 = |IM||11. Consequently, the condition is equivalent to:

I(ALAS) loomsoo = IAEAS 11 < 1.



4.3 Mutual Coherence and the Welch Bound

To enable practical recovery, we must impose stronger conditions on A than just "full spark" or
ERC. We need conditions that are checkable and ensure the success of efficient algorithms. One
such metric is Mutual Coherence.

Definition 4.3 (Mutual Coherence). Let A have £>-normalized columns ay, .. ., an. The mutual
coherence w(A) is the maximum absolute inner product between distinct columns :

A) = i aj)l.
w(A) 1§rp#ajx§N\<a/ aj)|

A small u(A) implies the columns are nearly orthogonal (incoherent). For an orthonormal basis
(N =m), u(A) =0. For overcomplete frames (N > m), u(A) > 0.

There is a fundamental limit to how incoherent a redundant dictionary can be, given by the
Welch Bound proven in the next proposition.

Proposition 4.4 (Welch Bound). For any matrix A € C™N with unit-norm columns and N > m:

| N—m
u(A) = m

For large N > m, this bound essentially scales as u(A) 2 1//m.

Proof. Let G = A*A be the Gram matrix. The diagonal entries are G;; = ||a;]|3 = 1. The off-
diagonal entries are bounded by u. We compute the Frobenius norm squared of G in two ways.
First, summing element-wise:

IGIE =D 16l + D 1647 = N+ > [{an ap* < N+ N(N — 1)p>.
i i#] i#]

Second, using eigenvalues Ay of G. Since A has rank at most m, G has at most m non-zero

eigenvalues. Also, tr(G) = > A = > G;; = N. Minimizing > AZ subject to > Ax = N with m

non-zero values occurs when A\x = N/m. Thus, ||G||2 = S> A2 > m(N/m)? = N?/m. Combining

inequalities:

N? N N—m
< _ 2 1< _ 2 > -
N+ NN—-1)p = 1< (N=1u” = p=y =1

We can derive a sufficient condition for OMP to recover the correct support based on coherence.

O

Theorem 4.5 (OMP Recovery Condition). OMP recovers any s-sparse signal x if the coherence

satisfies: )

HlA) < 2s —1°

This condition also ensures that the solution to (Py) is unique.

Proof. Sketch. Suppose we are at the first step. The signal is x = Zjes xjaj. The correlation with
a correct column ax (k € S) is (ak, y) = xk + D_j 4 X{a, aj). The magnitude is lower bounded:
[{(ak, )| > |Xk| — (s — 1)|Xmax|tt- The correlation with an incorrect column a, (£ ¢ S) is upper
bounded: [{ag, )| = | >_;cs Xj(ae, )| < S[xmax|pt. To ensure a correct column is picked, we need
the lower bound of the "good" correlation to exceed the upper bound of the "bad" correlation. A

precise worst-case analysis (see Tropp for instance) yields the condition u < 1/(2s — 1). O



While simple, the coherence condition u < 1/(2s — 1) combined with the Welch bound p >
1/+/m implies that we need /m > 25 — 1, or m ~ O(s?). This quadratic scaling is suboptimal
compared to the information-theoretic limit m ~ O(s). To bridge this gap, we turn to the Restricted
Isometry Property (RIP) later in this course.

5 Basis Pursuit

We consider the recovery of a signal x € CV from linear measurements y = Ax € C™ with m < N.
Since the system is underdetermined, we seek the sparsest solution. The natural approach, £g-
minimization, is NP-hard. Therefore, we relax the problem to £;-minimization, known as Basis
Pursuit:

min ||z||; subject to Az =y. (Py)
zeCN

The geometry of this relaxation is illustrated below. The £;-ball is a polytope (cross-polytope),
which tends to intersect the affine subspace {z : Az = y} at vertices (sparse vectors), whereas the
Z>-ball touches the subspace at a point that is generally not sparse.

Vi)

lzlh <137 |

Figure 1: Geometric intuition for Basis Pursuit. The £;-ball contacts the feasible set (black line) at
a coordinate axis, yielding a sparse solution. The £,-ball (dashed) contacts the line at a non-sparse
point.

5.1 The Null Space Property (NSP;)

A necessary and sufficient condition for the success of Basis Pursuit is the £;-Null Space Property
(NSP1). Intuitively, for x to be the unique minimizer, no perturbation v in the null space of A
should allow us to decrease the £;-norm.

Definition 5.1 (¢;-Null Space Property). A matrix A € C™*N s said to satisfy the £1-Null Space
Property of order s (NSPy) if for every set S C {1,..., N} with |S| <'s, and for every nonzero
vector v € ker A,

lvslh < lIvslh.

10



Remark 5.2. The condition implies that vectors in the null space are not “concentrated” on any
small support set S. In fact, at least half of their £1-mass must reside outside any set of size s.

Remark 5.3. It is clear that (NSP;) implies (NSPy).
We now state and prove the fundamental characterization of exact recovery for Basis Pursuit.

Theorem 5.4 (Exact Recovery via Basis Pursuit). Given a matrix A € C™*N  every s-sparse vector
x € CN js the unique solution of (Py) with y = Ax if and only if A satisfies the £1-Null Space
Property of order s.

Proof. Sufficiency: Assume A satisfies the NSP;. Let x be an s-sparse vector supported on S,
and let y = Ax. Let z € CV be any other feasible vector (Az = y) with z # x. The difference
v=2z—xisin ker A\ {0}. We compare their norms:

121lx = lx + vl
= [Ixs + vslls + llvsla (since x5 = 0)
> Ixsll = [lvslls + llvsll: (reverse triangle inequality)

=[xl + (lvslls = llvsll)-

By the NSPy, [|vs|l1 — [[vsll1 > 0, implying ||z|l1 > |Ix|lz. Thus, x is the unique minimizer.

Necessity: Assume every s-sparse vector is uniquely recovered. Suppose for contradiction that
NSP; fails. Then there exists a set S with |S| < s and a nonzero v € ker A such that [|vs|l1 > [|vs]|:.
Define x = vs. Then x is s-sparse. Let z = —vz. Note that x —z=v € kerA, so Ax = Az = y.
However,

Izlly = I = vsll = lIvslly < llvslly = lIx]l1-

Thus, z is a solution to Az = y with £;-norm no strictly greater than x. If [vel[; < [[vs]l1, X is not
a minimizer. If equality holds, x is not the uniqgue minimizer. Both contradict the assumption. [

Remark 5.5. While (NSPy) guarantees exact recovery for sparse vectors, it does not guarantee
stability (recovery of approximately sparse vectors) or robustness (recovery under noise). For this,
we require a stronger condition.

5.2 Stable Sparse Recovery

To ensure that the recovery is stable with respect to the sparsity defect os(x);, we introduce the
Stable £;-Null Space Property.

Definition 5.6 (Stable £;-Null Space Property). A matrix A € C™N satisfies the Stable £;-Null
Space Property of order s (SNSP1) with constant 0 < p < 1 if for every set S C {1, ..., N} with
|S| < s and every v € ker A,

Ivslly < pllvsll-

It turns out that the strict inequality in the standard NSP implies the stable version with some
o0 < 1, essentially due to the compactness of the unit sphere in finite dimensions.

Lemma 5.7 (Equivalence of NSP; and SNSP1). The £1-Null Space Property of order s holds if
and only if the Stable £1-Null Space Property of order s holds for some 0 < p < 1.

11



Proof. The implication (SNSP1) = (NSPy) is trivial (since p < 1).
We prove the converse. Let N' = ker A\ {0}. Consider the function

l[vsllx
)= B vl
Assuming NSP holds, for any v € A and any |S| < s, we have |vs|l1 < |lvs|l1. Adding [[vs|; to
both sides yields 2|vs||; < ||v]1, or 'h‘ffHHll < L. Thus, f(v) <1/2 for all v € N. Now, consider the
compact set K = {v € ker A: ||v|]|1 = 1}. Since f is continuous (being a maximum of continuous
functions) and K is compact, f attains its maximum on K. Let v = max,ex f(v). By NSP,
v < 1/2. Since f is scale-invariant, f(v) < «y for all v € ker A. This implies ||vs|1 < «|lv|1 =

Y(llvslly + lvsll1). Rearranging, we get (1 —)llvs|ly < llvsll1, or

Y
1% < —lvells.
lvsih < 3= vl

Since v < 1/2, we have p := ﬁ < 1. Thus SNSP holds. O
We now prove the main stability result below.

Theorem 5.8 (Stable Recovery). Suppose A satisfies the Stable £1-Null Space Property of order s
with constant 0 < p < 1. Let x € CN and let x* be the solution to (Py) with y = Ax. Then

2(1+
||X —X#Hl < %US(X)L

where 05(x); = inf{||x — z||1 : z is s-sparse} is the best s-term approximation error.

Proof. Let v = x — x#. Note that v € kerA. Let S be the support of the s largest entries
of x (in absolute value), so os(x)1 = |Ixs|l1. Since x# is the minimizer, ||x#[|1 < [[x[l1. Thus,
lIx + vil1 < |Ix]l1. We decompose the norms over S and S:

Ixlle > lIx+ vili = [[(xs + vs) + (x5 + vg)ll1
=|Ixs + vsll1 + lIxs + vell1

> lIxslly = llvslls + lIvslly = lIxslls
Using [[x]l1 = [Ixs|l1 + [Ixg|l1 and rearranging:
Ivslly = lvslly < 2l[xslls = 205(x)1.

Using the SNSP condition [|vs|[y < pl|vg][1, we substitute |vs||;:

2
vl = pllvsll < 205()1 = llvslli = T——05s(x)1.
Finally, the total error is:
2(1+p)
Ix = x# e = [lvll = lvsll + llvslly < (1 +p)lvslh < 4, st

O

Remark 5.9. This theorem confirms that Basis Pursuit is not only exact for s-sparse vectors (where
0s(x)1 = 0) but also stable: if x is close to being sparse, the recovered vector x* is close to x.
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5.3 Robustness

So far, we have discussed stable recovery, which accounts for the fact that vectors are not ex-
actly sparse (compressibility). We now turn to robust recovery, which accounts for noise in the
measurements. We consider the model:

y=Ax+e, with |le|. <n,

where e represents measurement noise bounded by m. To recover x, we consider the quadratically
constrained £;-minimization problem (often called Basis Pursuit Denoising):

min ||z||1  subject to ||[Az — y|l> < 7. (P1n)
zeCN

To guarantee recovery under these conditions, we must strengthen the Null Space Property.

Definition 5.10 (Robust Null Space Property). The matrix A satisfies the Robust Null Space
Property (or £,-Robust NSP) of order s with constants 0 < p < 1 and T > 0 if, for all v € CN and
any S C{1,..., N} with |S| <s,

Ivslls < pllvslly + Tl Av]l2. (5)

Remark. Notice that if 7 = 0, we recover the standard Stable NSP. The term T||Av||> allows
elements in the null space (or close to it) to have a larger support norm if they produce a non-zero
measurement response, providing a margin for noise.

The following theorem establishes that the Robust NSP implies success for Basis Pursuit De-
noising.

Theorem 5.11 (Stable and Robust Recovery). Suppose that A satisfies the Robust NSP of order
s with constants 0 < p <1 and 7 > 0. Let x € CN and y = Ax + e with |le||a < n. Let x* be a
solution to (Py). Then,

2(1+p 4T
||X7X#||l < %US(X)I + 1 _p"?-

Proof. Let h = x — x* be the error vector. We aim to bound ||hl|;. First, we observe that both x
and x# are feasible for the minimization problem. By hypothesis, the true noise satisfies ||Ax—y||» =
llell2 < m. Since x* is a solution to (P1,), it must satisfy the constraint ||Ax# — y|l» <.

Using the triangle inequality, we can bound the image of the error vector Ah:

1AR]l2 = A = x¥)ll2 = [I(Ax = y) = (Ax* = y)ll2 < IAx = yll2 + |AX* = y[» < 2. (6a)

Comment on Eq. (6a): This specific bound is crucial. While we do not know the noise e exactly,
the feasibility of both vectors guarantees the measurement residual of the difference is bounded
by 27.

Next, we proceed with the standard norm decomposition. Let S be the set of indices of the s
largest entries of x in modulus. Since x¥ is the minimizer of the £;-norm, [|x*||; < ||x||;. Following
the same derivation used in the proof of the Stable NSP:

Ix[lx = lIx + hlls = lIxs + hslls + lIxs + hslly = lIxslls = [lhsll + [lhslly — [Ixs]l1-
Rearranging terms yields:

llhslls < llhslly + 2[Ixsll1 = Ilhsll1 + 20s(x)1.
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Now we apply the Robust NSP (Definition 5.10) to the vector h. Since A satisfies the property
with constants p and T:
Ihslly < pllrslly + TI[Ah]l2.

Combining this with Eq. (6a), we get:
Ihsllx < pllhslly +27n. (6b)

The total error is ||h|l; = [|hs|l1 + [|hg|l:. We substitute (6b) into the total sum, but first, let
us bound ||hz||; solely in terms of os(x); and m. Substituting (6b) into the earlier rearrangement
lhslly < llhslly + 205(x)1:

Ihslly < (ellhsglly +277) 4+ 205(x)1.
Solving for || hz||::

< 205(x)1 + 271
<1,
Finally, using ||hllx < (1 + p)|lhz|l1 + 277 (derived from adding | h=|1 to (6b)):

(1 —ollhslly < 205(x)1 +2m7n = |hsls

1+p
Al < —
1 1-p

_ 2(11_+pp Los00n + (271(1_“;" ) 4 2T> n

_2(1+p) 21(1+p)+27(1 —p)

-1 P) US(X)l + 1-p n
2(1+p) 4t

- 1-p US(X)1+ 1_p”7-

(20s(x)1 +211) + 271

This concludes the proof. I

Remark 5.12 (Interpretation of the Error Bound). The error estimate in Theorem 5.11 decomposes
naturally into two distinct components, reflecting the dual nature of the recovery guarantee:

e Stability term: The first term, 2(%7’)05()()1, accounts for the "modeling error,” i.e., the

deviation of the vector x from being exactly s-sparse (or at least to share an error bound
similar to the best s-term approximation). This ensures that the reconstruction is stable with
respect to compressibility: if x is well-approximated by an s-sparse vector, the reconstruction
error remains controlled.

e Robustness term: The second term, %n, accounts for the measurement noise e where

llell, < m. This ensures that the reconstruction is robust: the reconstruction error scales
linearly with the noise magnitude 7.

Remark 5.13 (Exact Recovery). In the ideal scenario where the signal is exactly s-sparse (implying
os(x)1 = 0) and the measurements are noiseless (implying m = 0), the right-hand side of the
inequality vanishes. Consequently, Hx — x#Hl = 0, which guarantees exact recovery x* = x. This
generalizes the results of the noiseless setup to the noisy case.

Remark 5.14 (The Constants and the "Price of Robustness"). The constants appearing in the
bound provide insight into the quality of the recovery permitted by the matrix A:

14



e The constant C; = 2(%;") governs the amplification of the approximation error. Note that as
o — 0 (stronger NSP), C1 — 2, which is the optimal factor for instance optimality in £.

e The constant C, = 14% represents the "price of robustness.” It dictates how severely the
measurement noise is amplified in the recovered signal. The parameter T (from the Robust
NSP definition) acts as a scaling factor between the £>-norm of the noise and the £1-norm of

the recovery error.

Crucially, both constants diverge as p — 1. This implies that if the matrix A only barely satisfies
the Null Space Property (with p close to 1), the reconstruction becomes highly sensitive to both
noise and sparsity defects.
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