
Final Exam
Inverse problems and sparsity
Parcimonie et grande dimension

Monday 24th of March, 2025

• This subject has three exercises, the exercises are independent and can be treated separately.

• Non-master students (option MIR students non-affiliated to master MeA or GRAF) will be evaluated
on all the exercise 1 and 2.

• Master students will be evaluated on all the subject. They are asked to treat exercise 1 and 2 before
exercise 3. The subject is not meant to be finished in 2h and the last exercise concerns only Master
students which have treated, at least partially, the first two exercises and have enough time. Based on
our experience of the previous years, it is likely that the third exercise will be seen as a bonus exercise
to assess top grades on this exam.

• Questions with a coffee cup Ò are bonus questions, they are optional, their results can be
admitted, and these questions would be granted extra-points (the more coffee, the higher) in case of
good answers.

• This subject has 3 pages and you have two hours.

. You are kindly asked to write your answers on two separate sheets: one for exercise 1 and a new
one for exercises 2 and 3 in French and/or in English. For each group of sheets, your are asked to write
your surname and first name on the first page.

. On vous demande d’écrire vos réponses sur deux jeux de copies séparés: un pour l’exercice 1 et un
autre pour les exercices 2 et 3. Pour chaque jeu de copies vous dervrez écire votre nom et votre prénom
sur la première page.
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Exercise 1: Concatenation of dictionaries
Consider the matrix A = [I,F] = [a1, . . . ,a2m] resulting from the concatenation of the following two matrices:
the identity matrix of size m, I, and the matrix F associated to the discrete Fourier transform in dimension m.
The columns ek of F are given by

ek(t) =
1√
m
e2ȷπkt/m, 0 ≤ k, t < m.

1. Give a detailed pseudo-code (Matlab or python-like) of Orthogonal Matching Pursuit with the following
syntax: (x, res) = omp(b, A, k) where the input consists of: b, an m-dimensional vector, A, an m × N
matrix, and k, the number of iterations; and the output consists of: x, the estimated N -dimensional
coefficient vector, and res, the residual. Comment your code.

2. Consider m = 1024, and the m-dimensional vector b = 2a1 + 12a497 − 18a570 + 97a1002.

(a) Give the numerical value of the coherence of A. Explain.

(b) We apply 4 iterations of Orthonormal Matching Pursuit ((x, res) = omp(b, A, 2)). Describe the
resulting vectors x and res. Explain.

(c) Assume we compute the vector x with smallest ℓ1 norm such that b = Ax. What can we say
about the resulting vector ? Justify.

3. Consider m = 2.

(a) Using the coherence of A, what is the numerical value k of the sparsity level for which we have
recovery guarantees for the main algorithms studied during the course ?

(b) Find an example of two distinct (k + 1)-sparse vectors x1, x2 such that Ax1 = Ax2.

(c) What do you conclude ?

4. Consider m = 4.

(a) Same questions as for m = 2.

Ò (b) What can you say about the RIP constant δ2s(A) for s = 1? For s = 2 ? For larger s?

Exercise 2: Σ-OMP
OMP is defined for dictionaries with columns normalized in the usual Euclidean metric associated to the
usual inner product ⟨x, y⟩ =

∑
i xiyi = x⊤y in Rm via the equality ∥x∥2 :=

√
⟨x, x⟩. In certain settings

such as image processing, it is useful to consider weighted inner products ⟨x, y⟩Σ := x⊤Σy where Σ ∈ Rm×m

is a prescribed symmetric positive definite matrix. The goal of this exercise is to define and study the
corresponding variant of OMP, that will be called Σ-OMP.

1. Show that if Σ is symmetric positive definite then there exists a unique symmetric positive definite
matrix M of the same size such that Σ = M2. Such a matrix is denoted Σ1/2.

2. Show that a vector x ∈ Rm has unit ∥ · ∥Σ norm if, and only if, x′ := Σ1/2x has unit Euclidean norm

3. Give a simple characterization of the fact that a dictionary D = [d1, . . . , dK ] ∈ Rm×K has all its
columns di with unit ∥ · ∥Σ norm

4. Consider a vector r ∈ Rm and a dictionary D = [d1, . . . , dK ] ∈ Rm×K , and denote r′ := Σ1/2r,
D′ = Σ1/2D. Characterize argmaxi |⟨r, di⟩Σ| in terms of r′ and D′.

5. Given a vector y ∈ Rm and a full-rank matrix A ∈ Rm×s with s ≤ m, the orthogonal projection PΣ
A y of

y onto the range of A in the sense of the weighted norm ∥·∥Σ is defined as PΣ
A y = argminz∈range(A) ∥y−

z∥Σ. Characterize this projection in terms of y′ := Σ1/2y and A′ := Σ1/2A.

6. Write the pseudo-code of Σ-OMP, where every step of OMP involving an inner product (resp. a
Euclidean norm) is replaced by the corresponding step with their weighted equivalent. Comment your
pseudo-code and specify the requirements on the input of the algorithm

ÒÒ 7. What is the equivalent for Σ-OMP of the Exact Recovery Condition for OMP? Justify.
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. MASTER STUDENTS ONLY AFTER EXERCISES 1 AND 2 .

(Ò probably) Exercise 3: About the LARS algorithm
Least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data,
developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani in 2004. The goal of this
exercise is to study two equivalent formulations of LARS and investigate their differences with Orthogonal
Matching Pursuit (OMP) and LASSO algorithms.

Assume that you observe y ∈ Rm and you wan to fit a sparse regression model

y = Ax+ ε

where A ∈ Rm×n is a known matrix, x ∈ Rn is an (unknown) sparse target vector, and ε ∈ Rm is some
noise. We will denote by

z := A⊤y and Σ := A⊤A

the so-called residual vector z and covariance matrix Σ. We assume that Σ has rank r ≥ 2.

Notation: The (i, j) entry of Σ is denoted by Σi,j . Given p reals a1, . . . , ap, we denote by (a1 · · · ap) ∈ R1×p

a row vector and by (a1, . . . , ap) ∈ Rp×1 a (column) vector. We denote by Ai ∈ Rm the i-th column of A.
Given ı1, . . . , ık ∈ [n] := {1, . . . , n}, we denote by Σ(ı1,...,ık) ∈ Rk×k the sub-matrix of Σ keeping the

columns and the rows indexed by {ı1, . . . , ık}.

For the sake of simplicity, and without loss of generality, we assume that x ∈ Rn has non-negative entries,
namely xi ≥ 0 for all i ∈ [n]. The expressions of the LARS algorithm of this exercise are tailored under this
assumption. We begin with the standard formulation below.

Algorithm 1 LARS algorithm (standard formulation)
Data: Residual vector z and covariance matrix Σ.
Result: Sequence ((λk, ık))k≥1 where λ1 ≥ λ2 ≥ . . . > 0 are the so-called knots, and ı1, ı2, . . . are the

variables that enter the model.

/* Initialize computing (λ1, ı1) and residual z(1). */
1 Set k = 1, λ1 := max

i∈[n]
zi, ı1 := argmax

i∈[n]
zi and z(1) := z.

/* Note that ((λℓ, ıℓ))1≤ℓ≤k−1 and z(k−1) have been defined at the previous iteration. */
2 Set k ← k + 1 and compute the so-called least-squares fit

ηj :=
(
Σj,ı1 · · ·Σj,ık−1

)
Σ−1

(ı1,...,ık−1)
(1, . . . , 1) , ∀j ∈ [n] . (1)

3 For 0 < λ ≤ λk−1 define the intermediate residual z(k−
1
2 )(λ) = (z

(k− 1
2 )

1 (λ), . . . , z
(k− 1

2 )
n (λ)) given by

z
(k− 1

2 )
j (λ) := z

(k−1)
j − (λk−1 − λ)ηj , j = 1, . . . , n ,

and pick

λk := max
{
β ≥ 0 : ∃ j /∈ {ı1, . . . , ık−1}, s.t. z

(k− 1
2 )

j (β) = β
}
,

ık := argmax
j /∈{ı1,...,ık−1}

z
(k− 1

2 )
j (λk) ,

z(k) := z(k−
1
2 )(λk) .

Then, iterate from 2.
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The first questions might help you to understand the rationale behind this algorithm. The first step
(k = 1) of Algorithm 1 finds the maximum of the residual z and it holds that

λ1 = zı1 and λ1 ≥ zi , ∀i ∈ [n] .

We assume that this argument maximum is unique. When A⊤ε is distributed according to a law that
is absolutely continuous with respect to the Lebesgue measure, one can prove that the maximum is almost
surely unique (Ò prove it assuming that ε as standard Gaussian density). Note that z(1) = z and z

(1)
ı1 = λ1.

For k = 2 one compute η ∈ Rn by (1).

1. Show that

η =
A⊤Aı1

∥Aı1∥22
and ηı1 = 1

in (1) for k = 2.

2. Show that, for every 0 < λ ≤ λ1

z(
3
2
)(λ) = z − (λ1 − λ)η = A⊤

(
y − (λ1 − λ)

∥Aı1∥22
Aı1

)
and z

( 3
2
)

ı1 (λ) = λ .

3. Show that 0 ≤ λ2 < λ1.

4. Show that z
(2)
ı1 = z

(2)
ı2 = λ2.

Ò 5. Assume that ı1 is the unique argument maximum of max
i∈[n]

|zi|. We recall that ı1 is defined as the argument

maximum of max
i∈[n]

zi. Assume that ı2 is the unique argument maximum of max
j ̸=ı1

|z(
3
2
)

j (λ2)|. We recall that ı2 is

defined as the argument maximum of max
j ̸=ı1

z
( 3
2
)

j (λ2). Show that for all λ such that λ2 < λ < λ1, the LASSO

min
x#∈Rn

{1

2
∥y −Ax#∥22 + λ∥x#∥1

}
has a unique solution x(λ) given by

x(λ)
ı1 =

(λ1 − λ)

∥Aı1∥22
and x

(λ)
j = 0 , for j ̸= ı1.

(Hint: use the KKT condition and z(
3
2
)(λ))

We have shown that the first iteration of the LARS algorithm is related to ℓ1-minimization. Consider the next
iteration (k = 3).

ÒÒ 6. Consider η in (1) for k = 3:
η =

[
Σı1Σı2

]
Σ−1

(ı1,ı2)
(1, 1) ,

where Σi is the i-th column of Σ and
[
Σı1Σı2

]
∈ Rn×2. Show that η = A⊤u where u ∈ Rm is the solution to

u = argmin
v∈Rm

{
∥v∥22 : A⊤

ı1v = A⊤
ı2v = 1

}
.

We understand now why η is called the least-squares fit in (1).
(Hint: Consider the Lagrangian L(v;w1, w2) := ∥v∥22 − 2(A⊤

ı1v − 1)w1 − 2(A⊤
ı2v − 1)w2)

7. Show that, for every 0 < λ ≤ λ2

z(
5
2
)(λ) = A⊤

(
y − (λ1 − λ2)

∥Aı1∥22
Aı1 − (λ2 − λ)

[
Aı1Aı2

]
Σ−1

(ı1,ı2)
(1, 1)

)
and z

( 5
2
)

ı1 (λ) = z
( 5
2
)

ı2 (λ) = λ

8. Assume that ı2 is the unique argument maximum of max
j ̸=ı1

z
( 3
2
)

j (λ2) and show that 0 ≤ λ3 < λ2 < λ1.

9. Show that z
(3)
ı1 = z

(3)
ı2 = z

(3)
ı3 = λ3.

Remark: In the context of linear regression in high dimensions, the LARS algorithm can be used to identify a subset
of potential covariates. The LARS outputs a piecewise affine solutions path, and the knots λ1 > λ2 > · · · > 0 are
the change points of the LARS path that are built by tracking the ℓ∞ of the residual (in our case, the maximum of
z(k)). At each knot, the LARS algorithm adds to the active set of variables the covariate the most correlated with
the actual residual. In that way, the descent direction is always equiangular to all variables present in the current
active set (see the definition of η). This sequence of knots is closely related to the sequence of knots of LASSO, as
they differ by only one rule: “Only in the LASSO case, if a nonzero coefficient crosses zero before the next variable
enters, drop it from the active set and recompute the current joint least-squares direction”, as mentioned in standard
books on the subject.
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