Final Exam Inverse problems and high dimension Convexity & Sparsity

March 27th 2023 2pm to 4pm

This subject has two exercises. Non-master students will be evaluated on all the exercise 1 and the four first questions of exercise 2. The exercises are independent. Master students will be evaluated on all the subject. Questions with a coffee cup # are bonus questions and would be granted extra-points in case of good answers.

This subject has 3 pages and you have two hours. You are kindly asked to write your answers on two separate sheets, one for exercise 1 and one for exercise 2 in french or in english.

Exercise 1

The goal of this exercise is to investigate recovery guarantees for OMP based on the restricted isometry property. In the following, **A** is a matrix of size $m \times n$ where m < n, $[\![n]\!]$ denotes the set of all integers between 1 and $n, S \subseteq [\![n]\!]$ is a set of indices, s = |S|, and T is its complement in $[\![n]\!]$. The pseudo-inverse is denoted $(\cdot)^{\dagger}$. We remind that the following are equivalent:

- every vector \mathbf{x} with support included in the set S (i.e., $supp(\mathbf{x}) \subseteq S$) is recovered by OMP with s steps performed on $\mathbf{y} := \mathbf{A}\mathbf{x}$.
- A satisfies the *exact recovery property* (ERC) with respect to the set S,

$$\max_{j \notin S} \| (\mathbf{A}_S)^{\dagger} \mathbf{a}_j \|_1 < 1.$$
 (1)

We also recall that the restricted isometry constant of order k of matrix **A**, denoted $\delta_k = \delta_k(\mathbf{A})$, is the smallest real number $\delta > 0$ such that

$$(1-\delta)\|x\|_{2}^{2} \leq \|\mathbf{A}x\|_{2}^{2} \leq (1+\delta)\|x\|_{2}^{2}, \quad \forall x \in \mathbb{R}^{n} \text{ such that } \|x\|_{0} \leq k.$$

- 1. Assume that $\delta_s(\mathbf{A}) < 1$.
 - (a) Show that for any vector v such that $supp(v) \subseteq S$ we have

$$(1 - \delta_s) \|v\|_2 \le \|\mathbf{A}_S^\top \mathbf{A}_S v_S\|_2 \le (1 + \delta_s) \|v\|_2.$$

(b) Deduce that for any vector u we have

$$\frac{1}{1+\delta_s} \|u_S\|_2 \le \|(\mathbf{A}_S^{\top} \mathbf{A}_S)^{-1} u_S\|_2 \le \frac{1}{1-\delta_s} \|u_S\|_2$$

- 2. Consider two sets such that $S_1 \cap S_2 = \emptyset$ and $\delta_{s_1+s_2}(\mathbf{A}) < 1$ where $s_i := |S_i|$.
 - (a) Show that if $\operatorname{supp}(u) \subseteq S_1$, $\operatorname{supp}(v) \subseteq S_2$ then

$$|\langle \mathbf{A}_{S_1} u_{S_1}, \mathbf{A}_{S_2} v_{S_2} \rangle| \le \delta_{s_1+s_2} ||u||_2 ||v||_2$$

(b) Show that if $\operatorname{supp}(v) \subseteq S_2$, then

$$\|\mathbf{A}_{S_1}^{\top}\mathbf{A}_{S_2}v_{S_2}\|_2 \le \delta_{s_1+s_2}\|v\|_2$$

- 3. Assume that $\delta_{s+1} < 1$
 - (a) Consider $j \in T$. Show that

$$\|(\mathbf{A}_S)^{\dagger} a_j\|_2 \le \frac{\delta_{s+1}}{1-\delta_s}$$

(b) Explain why this implies that

$$\|(\mathbf{A}_{S})^{\dagger}a_{j}\|_{1} \leq \frac{\sqrt{s}\delta_{s+1}}{1-\delta_{s+1}}$$

4. Express a sufficient condition, based on δ_{s+1} , to ensure exact recovery of s-sparse vectors with s steps of OMP. The condition should read

$$\delta_{s+1}(\mathbf{A}) < c_s$$

with an appropriate choice of c_s .

5. (Bonus) Can the condition be tightened ?

Exercise 2

In the following, **A** is a matrix of size $m \times n$ where m < n, [n] denotes the set of all integers between 1 and n. For $\mathbf{x} \in \mathbb{R}^n$, let $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{e}$ for some \mathbf{e} satisfying $\|\mathbf{A}^\top \mathbf{e}\|_{\infty} \leq \eta$ for some $\eta > 0$, where \mathbf{A}^\top denotes the transpose matrix of **A**. Let \mathbf{x}^{\star} be a minimizer of the *Dantzig selector* defined as

$$\min_{\mathbf{z}\in\mathbb{R}^n} \|\mathbf{z}\|_1 \text{ subject to } \|\mathbf{A}^\top(\mathbf{y} - \mathbf{A}\mathbf{z})\|_{\infty} \le \eta.$$
(2)

1. Show that a minimizer \mathbf{x}^* of Program (2) always exists.

The goal of this exercise is to prove that the Dantzig selector (2) satisfies robustness and stability under the ℓ_1 -robust null space property (RNSP), namely it holds

$$\|\mathbf{x} - \mathbf{x}^{\star}\|_{1} \le C\sigma_{s}(\mathbf{x})_{1} + D \, s \, \eta \,, \tag{3}$$

where C, D > 0 are constants depending on the RNSP constants ρ and τ (see below), $s \ge 1$, and

 $\sigma_s(\mathbf{x})_1 = \min_{\mathbf{z} \in \mathbb{R}^n} \|\mathbf{x} - \mathbf{z}\|_1 \text{ subject to } \|\mathbf{z}\|_0 \le s \,,$

is the best s-term approximation error of \mathbf{x} for the ℓ_1 -norm.

2. Prove that there exists $S \subseteq [n]$, s = |S|, such that $\sigma_s(\mathbf{x})_1 = ||\mathbf{x}_T||_1$, where T is the complement of S in [n]. Is S unique?

We recall that the ℓ_1 -robust null space property (RNSP) of order s with constant $0 < \rho < 1$ and $\tau > 0$ is defined as

$$\|\mathbf{v}_S\|_1 \le \rho \|\mathbf{v}_T\|_1 + \tau \sqrt{s} \|\mathbf{A}\mathbf{v}\|_2 \tag{4}$$

for all $\mathbf{v} \in \mathbb{R}^n$ and all $S \subseteq [n]$ set of indices, s = |S|, and T is its complement in [n]. Consider $\mathbf{h} := \mathbf{x}^* - \mathbf{x}$.

2

3. Prove that

and deduce that

$$\begin{split} \|\mathbf{A}\mathbf{h}\|_2^2 &\leq \|\mathbf{A}^\top (\mathbf{A}\mathbf{h} - \mathbf{y} + \mathbf{y})\|_{\infty} \|\mathbf{h}\|_1 \,, \\ \|\mathbf{A}\mathbf{h}\|_2^2 &\leq 2\eta \|\mathbf{h}\|_1 \,. \end{split}$$

4. Show that $||x^*||_1 \leq ||x||_1$, deduce that

$$\|\mathbf{x}_{T}^{\star}\|_{1} \leq \|\mathbf{x}_{T}\|_{1} + \|\mathbf{h}_{S}\|_{1},$$

$$\|\mathbf{h}_{T}\|_{1} \leq 2\|\mathbf{x}_{T}\|_{1} + \|\mathbf{h}_{S}\|_{1}.$$
(6)

(5)

(6)

and that

MASTER students only

5. From (5) and (6) prove that for all $t > 2\eta$,

$$\|\mathbf{A}\mathbf{h}\|_{2}^{2} + (t - 2\eta)\|\mathbf{h}_{T}\|_{1} \le (t + 2\eta)\|\mathbf{h}_{S}\|_{1} + 2t\|\mathbf{x}_{T}\|_{1}.$$
(7)

and deduce that

$$\gamma_t \|\mathbf{h}\|_1 \le -\frac{1}{t+2\eta} \|\mathbf{A}\mathbf{h}\|_2^2 + (1+\gamma_t) \|\mathbf{h}_S\|_1 + \frac{2t}{t+2\eta} \|\mathbf{x}_T\|_1,$$
(8)

where $\gamma_t := \frac{t-2\eta}{t+2\eta}$.

6. For $0<\rho<1$ defined in (4), prove that there exists $1/2<\alpha<1$ such that

$$\rho = \frac{1-\alpha}{\alpha} \,.$$

7. Prove that there exists t > 0 such that $\alpha \gamma_t - (1 - \alpha) > 0$.

We consider that t satisfies this latter condition in the following questions.

8. Using (4) and (8), deduce that

$$(\alpha \gamma_t - (1 - \alpha)) \|\mathbf{h}\|_1 \le -\frac{1}{t + 2\eta} X^2 + \alpha (1 + \gamma_t) \tau \sqrt{s} X + \frac{2t}{t + 2\eta} \|\mathbf{x}_T\|_1.$$
(9)

where $X := \|\mathbf{Ah}\|_2$.

9. Using (9), prove (3).