Final Exam Inverse problems and high dimension Convexity \& Sparsity

March 27th 2023
2 pm to 4 pm

This subject has two exercises. Non-master students will be evaluated on all the exercise 1 and the four first questions of exercise 2. The exercises are independent. Master students will be evaluated on all the subject. Questions with a coffee cup are bonus questions and would be granted extra-points in case of good answers.

This subject has 3 pages and you have two hours. You are kindly asked to write your answers on two separate sheets, one for exercise 1 and one for exercise 2 in french or in english.

Exercise 1

The goal of this exercise is to investigate recovery guarantees for OMP based on the restricted isometry property. In the following, \mathbf{A} is a matrix of size $m \times n$ where $m<n, \llbracket n \rrbracket$ denotes the set of all integers between 1 and $n, S \subseteq \llbracket n \rrbracket$ is a set of indices, $s=|S|$, and T is its complement in $\llbracket n \rrbracket$. The pseudo-inverse is denoted $(\cdot)^{\dagger}$. We remind that the following are equivalent:

- every vector \mathbf{x} with support included in the set S (i.e., $\operatorname{supp}(\mathbf{x}) \subseteq S$) is recovered by OMP with s steps performed on $\mathbf{y}:=\mathbf{A x}$.
- A satisfies the exact recovery property (ERC) with respect to the set S,

$$
\begin{equation*}
\max _{j \notin S}\left\|\left(\mathbf{A}_{S}\right)^{\dagger} \mathbf{a}_{j}\right\|_{1}<1 . \tag{1}
\end{equation*}
$$

We also recall that the restricted isometry constant of order k of matrix \mathbf{A}, denoted $\delta_{k}=\delta_{k}(\mathbf{A})$, is the smallest real number $\delta>0$ such that

$$
(1-\delta)\|x\|_{2}^{2} \leq\|\mathbf{A} x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2}, \quad \forall x \in \mathbb{R}^{n} \text { such that }\|x\|_{0} \leq k
$$

1. Assume that $\delta_{s}(\mathbf{A})<1$.
(a) Show that for any vector v such that $\operatorname{supp}(v) \subseteq S$ we have

$$
\left(1-\delta_{s}\right)\|v\|_{2} \leq\left\|\mathbf{A}_{S}^{\top} \mathbf{A}_{S} v_{S}\right\|_{2} \leq\left(1+\delta_{s}\right)\|v\|_{2} .
$$

(b) Deduce that for any vector u we have

$$
\frac{1}{1+\delta_{s}}\left\|u_{S}\right\|_{2} \leq\left\|\left(\mathbf{A}_{S}^{\top} \mathbf{A}_{S}\right)^{-1} u_{S}\right\|_{2} \leq \frac{1}{1-\delta_{s}}\left\|u_{S}\right\|_{2}
$$

2. Consider two sets such that $S_{1} \cap S_{2}=\emptyset$ and $\delta_{s_{1}+s_{2}}(\mathbf{A})<1$ where $s_{i}:=\left|S_{i}\right|$.
(a) Show that if $\operatorname{supp}(u) \subseteq S_{1}, \operatorname{supp}(v) \subseteq S_{2}$ then

$$
\left|\left\langle\mathbf{A}_{S_{1}} u_{S_{1}}, \mathbf{A}_{S_{2}} v_{S_{2}}\right\rangle\right| \leq \delta_{s_{1}+s_{2}}\|u\|_{2}\|v\|_{2} .
$$

(b) Show that if $\operatorname{supp}(v) \subseteq S_{2}$, then

$$
\left\|\mathbf{A}_{S_{1}}^{\top} \mathbf{A}_{S_{2}} v_{S_{2}}\right\|_{2} \leq \delta_{s_{1}+s_{2}}\|v\|_{2} .
$$

3. Assume that $\delta_{s+1}<1$
(a) Consider $j \in T$. Show that

$$
\left\|\left(\mathbf{A}_{S}\right)^{\dagger} a_{j}\right\|_{2} \leq \frac{\delta_{s+1}}{1-\delta_{s}}
$$

(b) Explain why this implies that

$$
\left\|\left(\mathbf{A}_{S}\right)^{\dagger} a_{j}\right\|_{1} \leq \frac{\sqrt{s} \delta_{s+1}}{1-\delta_{s+1}}
$$

4. Express a sufficient condition, based on δ_{s+1}, to ensure exact recovery of s-sparse vectors with s steps of OMP. The condition should read

$$
\delta_{s+1}(\mathbf{A})<c_{s}
$$

with an appropriate choice of c_{s}.
5. Bonus) Can the condition be tightened ?

Exercise 2

In the following, \mathbf{A} is a matrix of size $m \times n$ where $m<n, \llbracket n \rrbracket$ denotes the set of all integers between 1 and n. For $\mathbf{x} \in \mathbb{R}^{n}$, let $\mathbf{y}=\mathbf{A x}+\mathbf{e}$ for some \mathbf{e} satisfying $\left\|\mathbf{A}^{\top} \mathbf{e}\right\|_{\infty} \leq \eta$ for some $\eta>0$, where \mathbf{A}^{\top} denotes the transpose matrix of A. Let \mathbf{x}^{\star} be a minimizer of the Dantzig selector defined as

$$
\begin{equation*}
\min _{\mathbf{z} \in \mathbb{R}^{n}}\|\mathbf{z}\|_{1} \text { subject to }\left\|\mathbf{A}^{\top}(\mathbf{y}-\mathbf{A z})\right\|_{\infty} \leq \eta \tag{2}
\end{equation*}
$$

1. Show that a minimizer \mathbf{x}^{\star} of Program (2) always exists.

The goal of this exercise is to prove that the Dantzig selector (2) satisfies robustness and stability under the ℓ_{1}-robust null space property (RNSP), namely it holds

$$
\begin{equation*}
\left\|\mathbf{x}-\mathbf{x}^{\star}\right\|_{1} \leq C \sigma_{s}(\mathbf{x})_{1}+D s \eta, \tag{3}
\end{equation*}
$$

where $C, D>0$ are constants depending on the RNSP constants ρ and τ (see below), $s \geq 1$, and

$$
\sigma_{s}(\mathbf{x})_{1}=\min _{\mathbf{z} \in \mathbb{R}^{n}}\|\mathbf{x}-\mathbf{z}\|_{1} \text { subject to }\|\mathbf{z}\|_{0} \leq s,
$$

is the best s-term approximation error of \mathbf{x} for the ℓ_{1}-norm.
2. Prove that there exists $S \subseteq \llbracket n \rrbracket, s=|S|$, such that $\sigma_{s}\left(\mathbf{x}_{1}=\left\|\mathbf{x}_{T}\right\|_{1}\right.$, where T is the complement of S in $\llbracket n \rrbracket$. Is S unique?
We recall that the ℓ_{1}-robust null space property (RNSP) of order s with constant $0<\rho<1$ and $\tau>0$ is defined as

$$
\begin{equation*}
\left\|\mathbf{v}_{S}\right\|_{1} \leq \rho\left\|\mathbf{v}_{T}\right\|_{1}+\tau \sqrt{s}\|\mathbf{A} \mathbf{v}\|_{2} \tag{4}
\end{equation*}
$$

for all $\mathbf{v} \in \mathbb{R}^{n}$ and all $S \subseteq \llbracket n \rrbracket$ set of indices, $s=|S|$, and T is its complement in $\llbracket n \rrbracket$. Consider $\mathbf{h}:=\mathbf{x}^{\star}-\mathbf{x}$.
3. Prove that

$$
\|\mathbf{A} \mathbf{h}\|_{2}^{2} \leq\left\|\mathbf{A}^{\top}(\mathbf{A} \mathbf{h}-\mathbf{y}+\mathbf{y})\right\|_{\infty}\|\mathbf{h}\|_{1},
$$

and deduce that

$$
\begin{equation*}
\|\mathbf{A} \mathbf{h}\|_{2}^{2} \leq 2 \eta\|\mathbf{h}\|_{1} . \tag{5}
\end{equation*}
$$

4. Show that $\left\|x^{\star}\right\|_{1} \leq\|x\|_{1}$, deduce that

$$
\left\|\mathbf{x}_{T}^{\star}\right\|_{1} \leq\left\|\mathbf{x}_{T}\right\|_{1}+\left\|\mathbf{h}_{S}\right\|_{1},
$$

and that

$$
\begin{equation*}
\left\|\mathbf{h}_{T}\right\|_{1} \leq 2\left\|\mathbf{x}_{T}\right\|_{1}+\left\|\mathbf{h}_{S}\right\|_{1} . \tag{6}
\end{equation*}
$$

MASTER students only

5. From (5) and (6) prove that for all $t>2 \eta$,

$$
\begin{equation*}
\|\mathbf{A} \mathbf{h}\|_{2}^{2}+(t-2 \eta)\left\|\mathbf{h}_{T}\right\|_{1} \leq(t+2 \eta)\left\|\mathbf{h}_{S}\right\|_{1}+2 t\left\|\mathbf{x}_{T}\right\|_{1} . \tag{7}
\end{equation*}
$$

and deduce that

$$
\begin{equation*}
\gamma_{t}\|\mathbf{h}\|_{1} \leq-\frac{1}{t+2 \eta}\|\mathbf{A} \mathbf{h}\|_{2}^{2}+\left(1+\gamma_{t}\right)\left\|\mathbf{h}_{S}\right\|_{1}+\frac{2 t}{t+2 \eta}\left\|\mathbf{x}_{T}\right\|_{1} \tag{8}
\end{equation*}
$$

where $\gamma_{t}:=\frac{t-2 \eta}{t+2 \eta}$.
6. For $0<\rho<1$ defined in (4), prove that there exists $1 / 2<\alpha<1$ such that

$$
\rho=\frac{1-\alpha}{\alpha} .
$$

7. Prove that there exists $t>0$ such that $\alpha \gamma_{t}-(1-\alpha)>0$.

We consider that t satisfies this latter condition in the following questions.
8. Using (4) and (8), deduce that

$$
\begin{equation*}
\left(\alpha \gamma_{t}-(1-\alpha)\right)\|\mathbf{h}\|_{1} \leq-\frac{1}{t+2 \eta} X^{2}+\alpha\left(1+\gamma_{t}\right) \tau \sqrt{s} X+\frac{2 t}{t+2 \eta}\left\|\mathbf{x}_{T}\right\|_{1} \tag{9}
\end{equation*}
$$

where $X:=\|\mathbf{A h}\|_{2}$.
9. Using (9), prove (3).

